Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
preprints.org; 2024.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202403.0177.v1

ABSTRACT

The pandemic caused by SARS-CoV-2 is still a major health problem. Newly emerging variants and long-COVID-19 represent a challenge for the global health system. In particular, individuals in developing countries with insufficient health care need easily accessible, affordable and effective treatments of COVID-19. Previous studies have demonstrated the efficacy of functional inhibitors of acid sphingomyelinase (FIASMA) against infections with various viruses, including early variants of SARS-CoV-2. This work investigated whether the acid sphingomyelinase inhibitors fluoxetine and sertraline, usually used as antidepressant molecules in clinical practice, can inhibit the replication of the former and recently emerged SARS-CoV-2 variants in vitro. Fluoxetine and sertraline potently inhibited the infection with pseudotyped virus like particles and SARS-CoV-2 variants D614G, alpha, delta, omicron BA.1 and omicron BA.5. These results highlight fluoxetine and sertraline as priority candidates for large-scale phase 3 clinical trials at different stages of SARS-CoV-2 infections, either alone or in combination with other medications.


Subject(s)
Severe Acute Respiratory Syndrome , Addison Disease , COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.23.529833

ABSTRACT

Expanding antiviral treatment options against SARS-CoV-2 remains crucial as the virus evolves rapidly and drug resistant strains have emerged. Broad spectrum host-directed antivirals (HDA) are promising therapeutic options, however the robust identification of relevant host factors by CRISPR/Cas9 or RNA interference screens remains challenging due to low consistency in the resulting hits. To address this issue, we employed machine learning based on experimental data from knockout screens and a drug screen. As gold standard, we assembled perturbed genes reducing virus replication or protecting the host cells. The machines based their predictions on features describing cellular localization, protein domains, annotated gene sets from Gene Ontology, gene and protein sequences, and experimental data from proteomics, phospho-proteomics, protein interaction and transcriptomic profiles of SARS-CoV-2 infected cells. The models reached a remarkable performance with a balanced accuracy of 0.82 (knockout based classifier) and 0.71 (drugs screen based classifier), suggesting patterns of intrinsic data consistency. The predicted host dependency factors were enriched in sets of genes particularly coding for development, morphogenesis, and neural related processes. Focusing on development and morphogenesis-associated gene sets, we found {beta}-catenin to be central and selected PRI-724, a canonical {beta}-catenin/CBP disruptor, as a potential HDA. PRI-724 limited infection with SARS-CoV-2 variants, SARS-CoV-1, MERS-CoV and IAV in different cell line models. We detected a concentration-dependent reduction in CPE development, viral RNA replication, and infectious virus production in SARS-CoV-2 and SARS-CoV-1-infected cells. Independent of virus infection, PRI-724 treatment caused cell cycle deregulation which substantiates its potential as a broad spectrum antiviral. Our proposed machine learning concept may support focusing and accelerating the discovery of host dependency factors and the design of antiviral therapies.


Subject(s)
Severe Acute Respiratory Syndrome , Tumor Virus Infections
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.15.520569

ABSTRACT

The continued evolution of the SARS-CoV-2 Omicron variant has led to the emergence of numerous sublineages with different patterns of evasion from neutralizing antibodies. We investigated neutralizing activity in immune sera from individuals vaccinated with SARS-CoV-2 wild-type spike (S) glycoprotein-based COVID-19 mRNA vaccines after subsequent breakthrough infection with Omicron BA.1, BA.2, or BA.4/BA.5 to study antibody responses against sublineages of high relevance. We report that exposure of vaccinated individuals to infections with Omicron sublineages, and especially with BA.4/BA.5, results in a boost of Omicron BA.4.6, BF.7, BQ.1.1, and BA.2.75 neutralization, but does not efficiently boost neutralization of sublineages BA.2.75.2 and XBB. Accordingly, we found in in silico analyses that with occurrence of the Omicron lineage a large portion of neutralizing B-cell epitopes were lost, and that in Omicron BA.2.75.2 and XBB less than 12% of the wild-type strain epitopes are conserved. In contrast, HLA class I and class II presented T-cell epitopes in the S glycoprotein were highly conserved across the entire evolution of SARS-CoV-2 including Alpha, Beta, and Delta and Omicron sublineages, suggesting that CD8+ and CD4+ T-cell recognition of Omicron BQ.1.1, BA.2.75.2, and XBB may be largely intact. Our study suggests that while some Omicron sublineages effectively evade B-cell immunity by altering neutralizing antibody epitopes, S protein-specific T-cell immunity, due to the very nature of the polymorphic cell-mediated immune, response is likely to remain unimpacted and may continue to contribute to prevention or limitation of severe COVID-19 manifestation.


Subject(s)
COVID-19 , Breakthrough Pain
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.09.519765

ABSTRACT

The COVID-19 pandemic remains a global health threat and novel antiviral strategies are urgently needed. SARS-CoV-2 employs the cellular serine protease TMPRSS2 for entry into lung cells and TMPRSS2 inhibitors are being developed for COVID-19 therapy. However, the SARS-CoV-2 Omicron variant, which currently dominates the pandemic, prefers the endo/lysosomal cysteine protease cathepsin L over TMPRSS2 for cell entry, raising doubts whether TMPRSS2 inhibitors would be suitable for treatment of patients infected with the Omicron variant. Nevertheless, the contribution of TMPRSS2 to spread of SARS-CoV-2 in the infected host is largely unclear. Here, we show that loss of TMPRSS2 strongly reduced the replication of the Beta variant in nose, trachea and lung of C57BL mice and protected the animals from weight loss and disease. Infection of mice with the Omicron variant did not cause disease, as expected, but again TMPRSS2 was essential for ef-ficient viral spread in the upper and lower respiratory tract. These results identify a key role of TMPRSS2 in SARS-CoV-2 Beta and Omicron infection and highlight TMPRSS2 as an attractive target for antiviral intervention.


Subject(s)
Tracheomalacia , Weight Loss , COVID-19
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.25.517953

ABSTRACT

Vaccines are central to controlling the coronavirus disease 2019 (COVID-19) pandemic but the durability of protection is limited for currently approved COVID-19 vaccines. Further, the emergence of variants of concern (VoCs) that evade immune recognition has reduced vaccine effectiveness, compounding the problem. Here, we show that a single dose of a murine cytomegalovirus (MCMV)-based vaccine, which expresses the spike (S) protein of the virus circulating early in the pandemic (MCMVS), protects highly susceptible K18-hACE2 mice from clinical symptoms and death upon challenge with a lethal dose of D614G SARS-CoV-2. Moreover, MCMVS vaccination controlled two immune-evading VoCs, the Beta (B.1.135) and the Omicron (BA.1) variants in BALB/c mice, and S-specific immunity was maintained for at least 5 months after immunization, where neutralizing titers against all tested VoCs were higher at 5-months than at 1-month post-vaccination. Thus, cytomegalovirus (CMV)-based vector vaccines might allow for long-term protection against COVID-19.


Subject(s)
COVID-19
7.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.21.508818

ABSTRACT

The SARS-CoV-2 Omicron variant and its sublineages show pronounced viral escape from neutralizing antibodies elicited by vaccination or prior SARS-CoV-2 variant infection owing to over 30 amino acid alterations within the spike (S) glycoprotein. We and others have recently reported that breakthrough infection of vaccinated individuals with Omicron sublineages BA.1 and BA.2 are associated with distinct patterns of cross-neutralizing activity against SARS-CoV-2 variants of concern (VOCs). BA.2 breakthrough infection mediated overall stronger cross-neutralization of BA.2 and its descendants (BA.2.12.1, BA.4, and BA.5) compared to BA.1 breakthrough infection. Here we characterized the effect of Omicron BA.4/BA.5 S glycoprotein exposure on the magnitude and breadth of the neutralizing antibody response upon breakthrough infection in vaccinated individuals and in mice upon booster vaccination. We show that immune sera from triple mRNA-vaccinated individuals with subsequent Omicron BA.4/BA.5 breakthrough infection display broad and robust neutralizing activity against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5. Administration of a prototypic BA.4/BA.5-adapted mRNA booster vaccine to mice following SARS-CoV-2 wild-type strain-based primary immunization is associated with similarly broad neutralizing activity. Immunization of naive mice with a bivalent mRNA vaccine (wild-type + Omicron BA.4/BA.5) induces strong and broad neutralizing activity against Omicron VOCs and previous variants. These findings suggest that when administered as boosters, mono- and bivalent Omicron BA.4/BA.5-adapted vaccines may enhance neutralization breadth, and in a bivalent format may also have the potential to confer protection to individuals with no pre-existing immunity against SARS-CoV-2.


Subject(s)
Severe Acute Respiratory Syndrome , Breakthrough Pain
8.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.06.506799

ABSTRACT

Recent findings in permanent cell lines suggested that SARS-CoV-2 Omicron BA.1 induces a stronger interferon response than Delta. Here, we show that BA.1 and BA.5 but not Delta induce an antiviral state in air-liquid interface (ALI) cultures of primary human bronchial epithelial (HBE) cells and primary human monocytes. Both Omicron subvariants caused the production of biologically active type I (alpha/beta) and III (lambda) interferons and protected cells from super-infection with influenza A viruses. Notably, abortive Omicron infection of monocytes was sufficient to protect monocytes from influenza A virus infection. Interestingly, while influenza-like illnesses surged during the Delta wave in England, their spread rapidly declined upon the emergence of Omicron. Mechanistically, Omicron-induced interferon signalling was mediated via double-stranded RNA recognition by MDA5, as MDA5 knock-out prevented it. The JAK/ STAT inhibitor baricitinib inhibited the Omicron-mediated antiviral response, suggesting it is caused by MDA5-mediated interferon production, which activates interferon receptors that then trigger JAK/ STAT signalling. In conclusion, our study 1) demonstrates that only Omicron but not Delta induces a substantial interferon response in physiologically relevant models, 2) shows that Omicron infection protects cells from influenza A virus super-infection, and 3) indicates that BA.1 and BA.5 induce comparable antiviral states.


Subject(s)
Tumor Virus Infections , Abortion, Septic
9.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.05.502936

ABSTRACT

SARS-CoV-2 entry is promoted by both cell-surface TMPRSS2 and endolysosomal cathepsins. To investigate the impact of differentially routed virions on host and viral processes, lung epithelial cells expressing distinct combinations of entry factors were infected with authentic viruses. Entry route determined early rates of viral replication and transcription, egress and inhibitor sensitivity, with differences observed between virus strains. Transcriptional profiling revealed that induction of innate immunity was correlated to viral genome and transcript abundance in infected cells. Surface entry triggered early activation of antiviral responses, reducing cumulative virion production, while endolysosomal entry delayed antiviral responses and prolonged virus shedding due to extended cell viability. The likely molecular footprints of escape from antiviral effector targeting were also recorded in viral genomes and correlated with entry route-dependent immune status of cells. TMPRSS2 orthologues from diverse mammals, but not zebra fish, facilitated infection enhancement, which was more pronounced for ancestral strains. Leveraging RNA-seq and scRNA-seq datasets from SARS-CoV-2 infected hamsters, we validate aspects of our model in vivo. In summary, we demonstrate that distinct cellular and viral processes are linked to viral entry route, collectively modulating virus shedding, cell-death rates and viral genome evolution.


Subject(s)
Severe Acute Respiratory Syndrome
10.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.02.502461

ABSTRACT

Recently, we reported that BNT162b2-vaccinated individuals after Omicron BA.1 breakthrough infection have strong serum neutralizing activity against Omicron BA.1, BA.2, and previous SARS-CoV-2 variants of concern (VOCs), yet less against the highly contagious Omicron sublineages BA.4 and BA.5 that have displaced previous variants. As the latter sublineages are derived from Omicron BA.2, we characterized serum neutralizing activity of COVID-19 mRNA vaccine triple-immunized individuals who experienced BA.2 breakthrough infection. We demonstrate that sera of these individuals have broadly neutralizing activity against previous VOCs as well as all tested Omicron sublineages, including BA.2 derived variants BA.2.12.1, BA.4/BA.5. Furthermore, applying antibody depletion we showed that neutralization of BA.2 and BA.4/BA.5 sublineages by BA.2 convalescent sera is driven to a significant extent by antibodies targeting the N-terminal domain (NTD) of the spike glycoprotein, whereas their neutralization by Omicron BA.1 convalescent sera depends exclusively on antibodies targeting the receptor binding domain (RBD). These findings suggest that exposure to Omicron BA.2, in contrast to BA.1 spike glycoprotein, triggers significant NTD specific recall responses in vaccinated individuals and thereby enhances the neutralization of BA.4/BA.5 sublineages. Given the current epidemiology with a predominance of BA.2 derived sublineages like BA.4/BA.5 and rapidly ongoing evolution, these findings are of high relevance for the development of Omicron adapted vaccines.


Subject(s)
Breakthrough Pain , COVID-19
11.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.27.22278003

ABSTRACT

Wastewater-based SARS-CoV-2 epidemiology (WBE) has been established as an important tool to support individual testing strategies. Omicron sub-variants BA.4/5 have spread globally displacing the predeceasing variants. Due to the severe transmissibility and immune escape potential of BA.4/5, early monitoring was required to asses and implement countermeasures in time. In this study, we monitored the prevalence of SARS-CoV-2 BA.4/5 at six municipal wastewater treatment plants (WWTPs) in the Federal State of North-Rhine-Westphalia (NRW, Germany) in May and June 2022. Initially, L452R-specific primers/probes originally designed for SARS-CoV-2 Delta detection were validated using inactivated authentic viruses and evaluated for their suitability to detect BA.4/5. Subsequently, the assay was used for RT-qPCR analysis of RNA purified from wastewater obtained twice a week at six WWTPs. The occurrence of L452R carrying RNA was detected in early May 2022 and the presence of BA.4/5 was confirmed by variant-specific single nucleotide polymorphism PCR (SNP-PCR) targeting E484A/F486V. Finally, the mutant fractions were quantitatively monitored by digital PCR confirming BA.4/5 as the majority variant by 5th June 2022. In conclusions, the successive workflow using RT-qPCR, variant-specific SNP-PCR, and RT-dPCR demonstrates the strength of WBE as a versatile tool to rapidly monitor variant spreading independent of individual test capacities.

12.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.22.501169

ABSTRACT

Omicron BA.1 variant isolates were previously shown to replicate less effectively in interferon-competent cells and to be more sensitive to interferon treatment than a Delta isolate. Here, an Omicron BA.2 isolate displayed intermediate replication patterns in interferon-competent Caco-2-F03 cells when compared to BA.1 and Delta isolates. Moreover, BA.2 was less sensitive than BA.1 and similarly sensitive as Delta to betaferon treatment. Delta and BA.1 displayed similar sensitivity to the approved anti-SARS-CoV-2 drugs remdesivir, nirmatrelvir, EIDD-1931 (the active metabolite of molnupiravir) and the protease inhibitor aprotinin, whereas BA.2 was less sensitive than Delta and BA.1 to EIDD-1931, nirmatrelvir and aprotinin. Nirmatrelvir, EIDD-1931, and aprotinin (but not remdesivir) exerted synergistic antiviral activity in combination with betaferon, with some differences in the extent of synergism detected between the different SARS-CoV-2 variants. In conclusion, even closely related SARS-CoV-2 (sub)variants can differ in their biology and in their response to antiviral treatments. Betaferon combinations with nirmatrelvir and, in particular, with EIDD-1931 and aprotinin displayed high levels of synergism, which makes them strong candidates for clinical testing. Notably, effective antiviral combination therapies are desirable, as a higher efficacy is expected to reduce resistance formation.

13.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.17.500346

ABSTRACT

Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a read-out for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in a broad range of cell culture models, independently of cytopathogenic effect formation. Compared to other cell culture models, the Caco-2 subline Caco-2-F03 displayed superior performance, as it possesses a stable SARS-CoV-2 susceptible phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of PHGDH, CLK-1, and CSF1R. The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the HK2 inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false positive hits.


Subject(s)
Severe Acute Respiratory Syndrome , Chemical and Drug Induced Liver Injury , COVID-19
14.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.28.489537

ABSTRACT

Variant of concern (VOC) Omicron-BA1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and multiple animal models is urgently needed. Here, we characterized Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in naive hamsters, ferrets and hACE2-expressing mice, and in immunized hACE2-mice. We demonstrate a spike mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In Syrian hamsters, Delta showed dominance over Omicron-BA.1 and in ferrets, Omicron-BA.1 infection was abortive. In mice expressing the authentic hACE2-receptor, Delta and a Delta spike clone also showed dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naive K18-hACE2 mice, we observed Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of both Delta and Omicron-BA.1 replication and pathogenicity. Finally, the Omicron-BA.1 spike clone was less well controlled by mRNA-vaccination in K18-hACE2-mice and became more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.

15.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.20.485440

ABSTRACT

Combining optimized spike (S) protein-encoding mRNA vaccines to target multiple SARS CoV-2 variants could improve COVID-19 control. We compared monovalent and bivalent mRNA vaccines encoding B.1.351 (Beta) and/or B.1.617.2 (Delta) SARS-CoV-2 S protein, primarily in a transgenic mouse model and a Wistar rat model. The low-dose bivalent mRNA vaccine contained half the mRNA of each respective monovalent vaccine, but induced comparable neutralizing antibody titres, enrichment of lung-resident memory CD8+ T cells, specific CD4+ and CD8+ responses, and fully protected transgenic mice from SARS-CoV-2 lethality. The bivalent mRNA vaccine significantly reduced viral replication in both Beta- and Delta-challenged mice. Sera from bivalent mRNA vaccine immunized Wistar rats also contained neutralizing antibodies against the B.1.1.529 (Omicron BA.1) variant. These data suggest that low-dose and fit-for-purpose multivalent mRNA vaccines encoding distinct S-proteins is a feasible approach for increasing the potency of vaccines against emerging and co-circulating SARS-CoV-2 variants.


Subject(s)
COVID-19
16.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.01.486695

ABSTRACT

Omicron is the evolutionarily most distinct SARS-CoV-2 variant (VOC) to date and displays multiple amino acid alterations located in neutralizing antibody sites of the spike (S) protein. We report here that Omicron breakthrough infection in BNT162b2 vaccinated individuals results in strong neutralizing activity not only against Omicron, but also broadly against previous SARS-CoV-2 VOCs and against SARS-CoV-1. We found that Omicron breakthrough infection mediates a robust B cell recall response, and primarily expands preformed memory B cells that recognize epitopes shared broadly by different variants, rather than inducing new B cells against strictly Omicron-specific epitopes. Our data suggest that, despite imprinting of the immune response by previous vaccination, the preformed B cell memory pool has sufficient plasticity for being refocused and quantitatively remodeled by exposure to heterologous S protein, thus allowing effective neutralization of variants that evade a previously established neutralizing antibody response.


Subject(s)
Breakthrough Pain , Severe Acute Respiratory Syndrome
17.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1462948.v1

ABSTRACT

The recent surge of infections with SARS-CoV-2 Omicron subvariants of prompted countries, such as Israel and Germany, to call for an accelerated booster vaccination program for health care workers and vulnerable groups in order to limit disease and transmission. However, detailed studies analyzing the correlates of protection over time after second booster vaccination are still lacking. Here, we examined the production of Spike receptor binding domain (RBD) -specific antibodies as well as neutralizing antibodies from subjects before, two, and seven weeks after the second booster vaccination against the D614G harboring B.1 variant as well as the variants of concern (VOC) Alpha, Beta, Delta in addition to Omicron BA.1 and BA.2. The second booster vaccination resulted in an increase in anti-RBD IgG antibodies and neutralizing antibodies against B.1 in all individuals tested, then remained nearly constant over the observed period. In addition, a 2nd booster resulted in an increase in neutralizing antibodies against VOCs Alpha, Beta, Delta, and Omicron subvariants BA.1 and BA.2. However, compared to B.1 the neutralizing capacity of both Omicron subvariants remained low. Neutralization of Omicron BA.1 and BA.2 was limited even after the 2nd booster vaccination indicating that an antibody-mediated protection against infection with this VOC is unlikely, as evidenced by the fact that three of the quadruple vaccinated individuals became infected with BA.1 during the course of the study. Moreover, T cell activation measured by interferon gamma release was detected in all subjects after the 2nd booster vaccination. This may offer protection suggesting protection against severe disease. T-cell activation was independent of the age of the subjects, but correlated with the amount of Spike-specific antibodies. Interestingly, in subjects with Omicron BA.1 breakthrough infection, a significant increase in neutralizing antibodies to all tested VOCs studied was observed after the 2nd booster vaccination. Taken together, our data suggest inferior protection from breakthrough infection with the Omicron subvariant BA.1 when compared to other VOCs after four vaccine doses.

18.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.02.478671

ABSTRACT

Although vaccines are currently used to control the coronavirus disease 2019 (COVID-19) pandemic, treatment options are urgently needed for those who cannot be vaccinated and for future outbreaks involving new severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) strains or coronaviruses not covered by current vaccines. Thus far, few existing antivirals are known to be effective against SARS-CoV-2 and clinically successful against COVID-19. As part of an immediate response to the COVID-19 pandemic, a high-throughput, high content imaging-based SARS-CoV-2 infection assay was developed in VeroE6-eGFP cells and was used to screen a library of 5676 compounds that passed phase 1 clinical trials. Eight candidates (nelfinavir, RG-12915, itraconazole, chloroquine, hydroxychloroquine, sematilide, remdesivir, and doxorubicin) with in vitro anti-SARS-CoV-2 activity in VeroE6-eGFP and/or Caco-2 cell lines were identified. However, apart from remdesivir, toxicity and pharmacokinetic data did not support further clinical development of these compounds for COVID-19 treatment.


Subject(s)
COVID-19 , Coronavirus Infections , Drug-Related Side Effects and Adverse Reactions
19.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.20.477067

ABSTRACT

Recently, we have shown that SARS-CoV-2 Omicron virus isolates are less effective at inhibiting the host cell interferon response than Delta viruses. Here, we present further evidence that reduced interferon-antagonising activity explains at least in part why Omicron variant infections are inherently less severe than infections with other SARS-CoV-2 variants. Most importantly, we here also show that Omicron variant viruses display enhanced sensitivity to interferon treatment, which makes interferons promising therapy candidates for Omicron patients, in particular in combination with other antiviral agents.

20.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.20.476754

ABSTRACT

The new variant of concern (VOC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Omicron (B.1.1.529), is genetically very different from other VOCs. We compared Omicron with the preceding VOC Delta (B.1.617.2) and the wildtype strain (B.1) with respect to their interactions with the antiviral type I interferon (IFN-alpha/beta) response in infected cells. Our data indicate that Omicron has gained an elevated capability to suppress IFN induction upon infection and to better withstand the antiviral state imposed by exogenously added IFN-alpha.


Subject(s)
Coronavirus Infections
SELECTION OF CITATIONS
SEARCH DETAIL